Biopesticides Vs. Traditional Agrochemicals

In 2014, there is a place for both biopesticides and traditional agrochemicals in virtually all areas of agriculture. Researchers involved in fruit and vegetable, greenhouse, and row crop production say these two forms of crop protectants can be used solo or in tandem, depending on the situation. In either case, however, planning ahead is required.

In general, the biggest difference between these two classes of materials is selectivity. Most biopesticides are highly targeted in the pests they kill, and as a result have less impact on beneficials or natural enemies. Traditional agrochemicals, on the other hand, are often considered to be broad spectrum products.

Defining Biopesticides And Their Benefits
Virtually everyone in agriculture understands the definition of a traditional crop protectant. The term “biopesticide,” however, may be a little murkier to most people.

As defined by EPA, biopesticides fall into three major classes:
• Microbial pesticides consist of a microorganism (e.g., a bacterium, fungus, virus, or protozoan) as the active ingredient.
• Plant-Incorporated-Protectants (PIPs) are pesticidal substances that plants produce from genetic material that has been added to the plant.
• Biochemical pesticides are naturally occurring substances that control pests by non-toxic mechanisms.

According to Shimat Joseph, IPM entomology advisor at the University of California, no matter which class a biopesticide falls into, the product generally provides several benefits to specialty crop growers including a fast breakdown of the residue and a reduction in non-target exposure or impacts. In addition, some products, such as Bacillus thuringiensis (Bt), act on specific pests at specific life stages.

In fact, Shimat says biopesticides are often a better fit for growers if used when the pest populations are below the economic threshold or at least the action threshold for traditional materials. In the case of Bt, early season applications to combat caterpillar pests when pressure is low can provide economic benefits by reserving applications of some of the more expensive conventional products for later in the production cycle. Biopesticides’ complex modes of action also serve as an effective resistance management tool.

Angus Catchot, an entomologist at Mississippi State University, says row crop farmers can see many similar benefits with biopesticides. In particular, he says products containing a virus often are successful at suppressing pests, such as bollworms, and reducing non-target exposure, as well.
“Once [the virus] infects larvae, those larvae become a source of the virus, and it just keeps working and working,” Catchot explains. “These products actually take some of the pressure off the traditional insecticides from a resistance management standpoint.”

Where Agrochemicals Have An Edge
In spite of their challenges regarding impact on non-target insects, traditional agrochemicals have numerous benefits.

Often a single-use active ingredient can suppress multiple pests such as thrips, aphids, or worms, Joseph says. Plus, they have longer residual activity, are likely to provide persistent control under field conditions, and the activity of the active ingredient is not likely to be affected by environmental factors, such as low humidity or high temperature.

In addition, Joseph says traditional chemicals help manage most active life stages of a pest, something most biopesticides can’t claim.

“For example, Bt is most effective on first and second instars of moth larvae,” he says. “If the larvae get bigger, Bt is no longer as effective. And, fewer numbers of sprays are required than with biopesticides. If a grower goes with synthetic pyrethroids, he just needs one or two applications. This saves money.”

Reduced cost is another positive. “Off-patent insecticides are cheaper than biopesticides or newer reduced-risk materials and provide relatively consistent results,” Joseph says.

Working In Tandem
In spite of the apparent cost benefits of off-patent traditional chemicals, using both kinds of products, sometimes in tandem, can help with resistance management, preserve beneficials, and offer a better environmental fit.

According to Catchot, often biopesticides can be rotated with other products for a cycle, reducing the chance for resistance to develop. The timing is earlier than for traditional products, however.
“Put them out earlier and on a lower pest population, particularly if [the biopesticide] is some kind of virus,” he explains. “You want to give [the virus] time to infect, sporulate, and spread.”

Raymond Cloyd, a professor in the department of entomology at Kansas State University who focuses on insecticides and miticides in greenhouse vegetable, fruit and floral production, says biopesticides and traditional agrochemicals can be used in tandem to target all stages of an insect’s life. For example, he says applying Bt early in the season will kill young caterpillars. If a second generation develops later in the season or larger caterpillars are present, a traditional material, such as a pyrethroid, can be used.

No matter the product, however, Cloyd says timing is critical.

“You want to time applications to kill the most susceptible life stage. That goes back to knowing the biology of the insect and mite pests, their behaviors, and understanding the pesticide you are using because some products are more effective on adults and some are more effective on eggs and nymphs. Make applications when the predominant life stages are susceptible to the material.”
Joseph says it is equally important to know the products’ properties. For example, biopesticides typically won’t disrupt other beneficial organisms.

“Some act on certain pests, certain life stages of the pest, function only during a given humidity/temperature range, and translocate within plants or act only by contact,” he explains.

Joseph says once growers know how the products work and interact, both traditional agrochemicals and biopesticides can be used more strategically and effectively. He adds that preferred products will have activity against the pest, attack the vulnerable life stage, and have lower residual activity.

By combining biopesticide products with these strengths and traditional chemicals that can fill in the gaps for other stages or environmental conditions, growers are, in effect, adding a whole new set of tools to their crop protection tool box.

Pages: 1 2

Topics:

Leave a Reply

One comment on “Biopesticides Vs. Traditional Agrochemicals

  1. The big draw to most bio-pesticides is the PHI is reduced to zero days for most of them. This is a very important draw on many market farms, including mine. We make use of BT and Spinosad alternating them to help cut down resistance. This works very well for most of our caterpillar problems. Spinosad is one of the best Colorado Potato Beetle controls we have used if you get them at the early larval stage.

    We blend the bio-pesticides with conventional insecticides and fungicides. There is not much that will control Squash Bugs and Cucumber beetles except pyrethroids. We refuse to use neonicotinoids on our farm due to reduced honey bee vigor when we have tried them as seed coatings. Using pyrethroids means we need to spray at dusk and at night, but it is a fair tradeoff.

    The other plus to most bio-pesticides is much reduced worker risk for both applicator and field workers. When most of your family is doing the picking you want to use the softest chemistry possible. On my farm my children help pick and range from 14 to 2. The oldest is doing some of his own applications, but he is restricted to applying BTs and Potassium Bicarb. He has already read the entire county provided private applicators license materials, but I am not comfortable letting him apply silencer or other products carrying a “warning” tag.

    It is great to see chemistries that are much more targeted to specific problems with much reduced risk to people, animals, beneficials and the environment. The only downside to targeted chemistries is the amounts needed to be kept on hand and their shelf life. I firmly believe that as bio-pesticides are more widely adopted we will see less reliance on the nuclear options unless they are necessary, which really is a good thing for managing resistance.

Crop Protection Stories

Insect ControlBagrada Bug Continues To Spread In California’s Brassica Crops
October 15, 2014
The pest is expected to be a problem through December. Read More
CitrusScientists Uproot Common “Superweed” Myths
October 15, 2014
A new fact sheet is available that explores the truth behind two fallacies.   Read More
BerriesOnline Strawberry Monitoring System Set To Expand Services
October 8, 2014
After success in Florida, South Carolina growers will soon have access to unique crop protection invention. Read More
Insect ControlAphid Outbreak Leads To “Staggering” Losses
October 3, 2014
In California, Salinas and Gonzales were hit hard by the foxglove aphid, leaving some lettuce fields unmarketable. Read More
Insect ControlBagrada Bug And Brown Marmorated Stink Bug Posing Threat To Western Growers
October 1, 2014
Two species of stink bugs are now posing a serious threat to agricultural production in the Western U.S.: the brown Read More
Insect ControlMore Than 600,000 Acres Removed From Golden Nematode Regulation In New York
October 1, 2014
The potato acreage was taken off the Animal and Plant Health Inspection Service’s list; under 6,000 acres in New York are still considered to be infested. Read More
Crop ProtectionTool Helps Track Insects On The Move At Night
October 1, 2014
Signals collected by the National Weather Service’s Doppler radar network may serve as an early warning system to track corn earworm, a major pest in sweet corn. Read More

The Latest

CitrusEPA Launches Program To Reduce Pesticide Drift
October 22, 2014
The voluntary star-rating program aims to protect people, wildlife and the environment. Read More
Crop ProtectionTool Helps Track Insects On The Move At Night
October 1, 2014
Signals collected by the National Weather Service’s Doppler radar network may serve as an early warning system to track corn earworm, a major pest in sweet corn. Read More
Crop ProtectionCalifornia To Ban Some Pesticides In San Joaquin Valley
September 24, 2014
Chemistries with high Volatile Organic Compounds are used on pistachios, almonds, walnuts, grapes, and citrus crops. Read More
Crop ProtectionBagrada Bug On The Move In California
September 16, 2014
Find out more on management tactics and what counties are impacted by this invasive pest. Read More
Crop ProtectionNimitz Nematicide Receives EPA Approval
September 12, 2014
New product from Adama has a unique mode of action and is approved for use on a variety of vegetables. Read More
Crop ProtectionGiant Snail Threat Spreading In South Florida
September 10, 2014
Dangerous invasive pests found well outside Miami-area hot zone. Read More
Crop ProtectionStockton’s Timorex Gold Biofungicide Receives EPA Reg…
September 9, 2014
This broad spectrum fungicide can be used in rotation or in a tank mix. Read More
CitrusFMC Acquires Cheminova
September 9, 2014
Transaction expected to close in early 2015. Read More
Crop ProtectionBayer Opens Worldwide Biologics R&D Center In Calif…
September 5, 2014
$80 million facility will also be used to develop vegetable seed. Read More
Crop ProtectionHow To Control Corn Earworm, European Corn Borer In Swe…
September 5, 2014
Monitor traps, plant varieties with good husk cover, and rotate modes of action to avoid resistance. Read More
Crop ProtectionMost Fresh California Produce Has Little/No Detectable …
September 4, 2014
State Department of Pesticide Regulation finds that 95% of produce was in compliance. Read More
Crop ProtectionGetting To The Root Of Good Soil Health Requires Some D…
August 21, 2014
Dave Gilliam of Horticultural Alliance says more citrus growers are paying attention to what's happening below the ground in their groves. Read More
Crop ProtectionBioConsortia Inc. Bolsters Executive Team
August 18, 2014
Industry veterans Christina Huben and Dr. Susan Turner bring experience to plant biotechnology firm. Read More
Crop ProtectionCover Crop Solutions Offers New Three-Way Cover Crop Mi…
August 13, 2014
A fast-growing cover crop mix needs 45 to 60 days of growth in warm conditions. Read More
Crop ProtectionBiopesticides Vs. Traditional Agrochemicals
August 4, 2014
To effectively control pests, understand how the products work and know the biology of insect pests. Read More
Crop ProtectionFrench Crop Protection Firm Acquires Fine Holdings Ltd.
August 4, 2014
De Sangosse group seeks to bolster its business with purchase of plant growth regulator specialist. Read More
CEU SeriesCEU Series: Gain A Deeper Understanding Of Fertilizers
August 1, 2014
It's never too late to grow your knowledge of plant nutrients. Read More
BerriesNew Study Finds Simple Solution To Monitoring Spotted W…
July 31, 2014
UF/IFAS researchers are using a mixture of yeast, sugar, and water to lure, trap major berry pest. Read More